MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY NH-58 Delbi Poorles III NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 (U.P.) ## Sessional Examination/Class Test – 2 (ODD Semester, 2022 – 23) | | Course/Branches: B Tech (CSE/IT/CS-IT/CS-DS/CS-IOT/AI/AIML) Subject Name: Discrete Structures 8 Th | | | | |----------|--|---------------------------------------|----------------------------|--| | | Theory of Logic | | ter: III | | | | Subject Code: KCS – 303 | Max. Ma
Time Allowed: 120 I | | | | | | | | | | ・しているという | CO - 3: The student will be able to apply concept such as posts, lattices, and also properties of Boolean algebras to study some practical problems concerning computer science. CO - 4: The student will be able to apply fundamental concepts of mathematical logic to study some practical problems concerning computer science. | | | | | | g sampanot science. | | | | | | Section - A (CO -3) | | | | | | NOTE: Attempt ALL questions. | (30 |) Marks) | | | | Q 1 Attempt any six parts of this question. Each part is for two marks. | $(6 \times 2 = 12)$ | 2 Marks) | | | | (a) What is a poset, i.e., a partially ordered set? | | (K_1) | | | | (b) What relation will make the power set $P = \mathcal{P}(\{a,b,c\})$ a poset? | | (K ₁) | | | を明め上の | (c) State the steps to obtain a Hasse diagram from the digraph of a poset. | | (K1)- | | | | (d) Draw the Hasse diagram of poset $A = \{3, 4, 12, 24, 48, 72\}$, ordered by relative | ation "divides". | (K ₂) | | | | (e) Define maximal element and minimal element of a poset. | | (K_1) | | | | (f) What are maximal and minimal elements of $P = \{2.4, 5, 10, 12, 20, 25\}$, particular divides". | artially ordered by the | relation (K_2) | | | | (g) Define least upper bound and greatest lower bound of a subset of a poset | | (K_1) | | | | Q 2 Attempt any three parts of this question. Each part is for six marks. | $(3\times 6=18$ | Marks) | | | | (a) Let Z denote the set of integers. Show that the relation | | | | | | $R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid b = a^k, \text{ for some positive integral}\}$ | eger k} | | | | | is a partial order on \mathbb{Z} . | | (K_3) | | | | (b) Let D_n denotes the set of divisors of the natural number $n > 1$. Show the respect to the relation "divides". Also draw the Hasse diagram of the poset | that it is a partial order D_{36} . | r set with (K_3) | | | | (c) For every pair of elements a, b in the poset D_{42} , find $\sup\{a, b\}$. | | , (K3) | | | | (d) Give an example of a finite poset that neither has a maximal element nor | a minimal element. | (K ₃) | | | | (e) Consider the set $P = \{1, 2, 3, 4, 5, 6, 7, 8\}$, partially ordered by the relation $B = \{3, 4, 5\}$. Find sup (A) , inf (A) , sup (B) , and inf (B) . | a "divides". Let $A = \{$ | 1.2} and (K ₃) | | | | The state of s | | | | ## Section - B (CO -4) | NOTE: Attempt ALL questions. |) Marks) | |---|-------------| | Q 3 Attempt any <u>six parts</u> of this question. Each part is for two marks. $(6 \times 2 = 12)$ | ! Marks) | | (a) Suppose $p \to q$ is a false statement. Find the truth value of the formula $(\neg p \lor \neg q) \to q$. | (K_1) | | (b) What is the truth tables for the the formula $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$. | (K_2) | | (c) What are the converse and contrapositive of the statement: If it rains, then I will not go to mark | et. (K_2) | | (d) Test whether the formula $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology or a contradiction. | (K_2) | | (e) What are inconsistent premises? | (K_1) | | (f) What are valid argument and valid conclusion. | (K_1) | | (g) State Modus Ponens and Modus Tollens. | (K_2) | | Q 4 Attempt any three parts of this question. Each part is for six marks. $(3 \times 6 = 18)$ | Marks) | | (a) Give the truth tables of the formula $((p \rightarrow q) \lor r) \lor (p \rightarrow q \rightarrow r)$. | (K_3) | | (b) Test whether $((p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r)) \lor (\neg p \land \neg q) \lor (\neg p \lor r)$ is a tautology. | (K_3) | | (c) Are the premises $p \to q$, $p \to r$, $q \to \neg r$, p inconsistent? Explain. | (K_3) | | (d) Use direct method to derive the implication $p \rightarrow q, q \rightarrow r, p \Rightarrow r$. | (K_3,K_4) | | (e) Verify validity of the following conclusion: If the races are fixed so the casinos are crooked | then the | tourist trade will decline. If the tourist trade decreases, then the police will be happy. The police force is never happy. Therefore, the races are not fixed. (K_4)