

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY NH-58 Delbi Poorles III

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 (U.P.)

Sessional Examination/Class Test – 2 (ODD Semester, 2022 – 23)

	Course/Branches: B Tech (CSE/IT/CS-IT/CS-DS/CS-IOT/AI/AIML) Subject Name: Discrete Structures 8 Th			
	Theory of Logic		ter: III	
	Subject Code: KCS – 303	Max. Ma Time Allowed: 120 I		
・しているという	CO - 3: The student will be able to apply concept such as posts, lattices, and also properties of Boolean algebras to study some practical problems concerning computer science. CO - 4: The student will be able to apply fundamental concepts of mathematical logic to study some practical problems concerning computer science.			
	g sampanot science.			
	Section - A (CO -3)			
	NOTE: Attempt ALL questions.	(30) Marks)	
	Q 1 Attempt any six parts of this question. Each part is for two marks.	$(6 \times 2 = 12)$	2 Marks)	
	(a) What is a poset, i.e., a partially ordered set?		(K_1)	
	(b) What relation will make the power set $P = \mathcal{P}(\{a,b,c\})$ a poset?		(K ₁)	
を明め上の	(c) State the steps to obtain a Hasse diagram from the digraph of a poset.		(K1)-	
	(d) Draw the Hasse diagram of poset $A = \{3, 4, 12, 24, 48, 72\}$, ordered by relative	ation "divides".	(K ₂)	
	(e) Define maximal element and minimal element of a poset.		(K_1)	
	(f) What are maximal and minimal elements of $P = \{2.4, 5, 10, 12, 20, 25\}$, particular divides".	artially ordered by the	relation (K_2)	
	(g) Define least upper bound and greatest lower bound of a subset of a poset		(K_1)	
	Q 2 Attempt any three parts of this question. Each part is for six marks.	$(3\times 6=18$	Marks)	
	(a) Let Z denote the set of integers. Show that the relation			
	$R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid b = a^k, \text{ for some positive integral}\}$	eger k}		
	is a partial order on \mathbb{Z} .		(K_3)	
	(b) Let D_n denotes the set of divisors of the natural number $n > 1$. Show the respect to the relation "divides". Also draw the Hasse diagram of the poset	that it is a partial order D_{36} .	r set with (K_3)	
	(c) For every pair of elements a, b in the poset D_{42} , find $\sup\{a, b\}$.		, (K3)	
	(d) Give an example of a finite poset that neither has a maximal element nor	a minimal element.	(K ₃)	
	(e) Consider the set $P = \{1, 2, 3, 4, 5, 6, 7, 8\}$, partially ordered by the relation $B = \{3, 4, 5\}$. Find sup (A) , inf (A) , sup (B) , and inf (B) .	a "divides". Let $A = \{$	1.2} and (K ₃)	
	The state of the s			

Section - B (CO -4)

NOTE: Attempt ALL questions.) Marks)
Q 3 Attempt any <u>six parts</u> of this question. Each part is for two marks. $(6 \times 2 = 12)$! Marks)
(a) Suppose $p \to q$ is a false statement. Find the truth value of the formula $(\neg p \lor \neg q) \to q$.	(K_1)
(b) What is the truth tables for the the formula $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$.	(K_2)
(c) What are the converse and contrapositive of the statement: If it rains, then I will not go to mark	et. (K_2)
(d) Test whether the formula $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology or a contradiction.	(K_2)
(e) What are inconsistent premises?	(K_1)
(f) What are valid argument and valid conclusion.	(K_1)
(g) State Modus Ponens and Modus Tollens.	(K_2)
Q 4 Attempt any three parts of this question. Each part is for six marks. $(3 \times 6 = 18)$	Marks)
(a) Give the truth tables of the formula $((p \rightarrow q) \lor r) \lor (p \rightarrow q \rightarrow r)$.	(K_3)
(b) Test whether $((p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r)) \lor (\neg p \land \neg q) \lor (\neg p \lor r)$ is a tautology.	(K_3)
(c) Are the premises $p \to q$, $p \to r$, $q \to \neg r$, p inconsistent? Explain.	(K_3)
(d) Use direct method to derive the implication $p \rightarrow q, q \rightarrow r, p \Rightarrow r$.	(K_3,K_4)
(e) Verify validity of the following conclusion: If the races are fixed so the casinos are crooked	then the

tourist trade will decline. If the tourist trade decreases, then the police will be happy. The police force is

never happy. Therefore, the races are not fixed.

 (K_4)